如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,0)和B.
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q的坐标;
(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.
某工程队在我城中村拆迁改造过程中承包了一项拆迁工程,原计划每天拆迁1250平方米,应准备工作不足,第一天少拆迁了20% 。从第二天起,该工程对加快了拆迁速度,第三天拆迁了1440平方米,
(1)求:该工程队第一天拆迁的面积;
(2)若该工程队第二天,第三天每天的拆迁面积比前一天增加的百分数相同,求这个百分数
某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米。设这个苗圃园垂直于墙的一边的长为x米
(1)用含x的代数式表示平行于墙的一边的长为____米,.x的取值范围为____
(2)这个苗圃园的面积为88平方米时,求x的值
如图,在□ABCD中,E,F分别为边AB,CD的中点,连结DE,BF,BD.
(1)求证:△ADE≌△CBF.
(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.
如图,已知点A(-4,8)和点B(2,n)在抛物线上.求a的值及点B的坐标.
已知关于x的一元二次方程x2+2x+m=0.
(1)当m=3时,判断方程的根的情况;
(2)当m=-3时,求方程的根.