设f(x)是定义在[-1,1]上的奇函数,且对任意的实数a,b∈[-1,1],当a+b
≠0时,都有>0.
(1)若a>b,试比较f(a)与f(b)的大小;
(2)解不等式f(x-
)<f(x-
);
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围.
如图所示,已知AB为圆O的直径,点D为线段AB上一点,且,点C为圆O上一点,且
.点P在圆O所在平面上的正投影为点D,PD=DB.
(1)求证:;
(2)求二面角的余弦值.
已知平行四边形的两条边所在直线的方程分别是,
, 且它的对角线的交点是M(3,3),求这个平行四边形其它两边所在直线的方程.
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:∥平面
;
(2)求异面直线与
所成角的余弦值.
已知圆C经过A(1,1)、B(2,)两点,且圆心C在直线l:x-y+1=0上,求圆C的标准方程.
已知半径为的球内有一个内接正方体(即正方体的顶点都在球面上).
(1)求此球的体积;
(2)求此球的内接正方体的体积;
(3)求此球的表面积与其内接正方体的全面积之比.