(本题满分12分)在平面直角坐标系中,的两个顶点
的坐标分别为
,平面内两点
同时满足一下条件:①
;②
;③
(1)求的顶点
的轨迹方程;
(2)过点的直线
与(1)中的轨迹交于
两点,求
的取值范围。
已知为定义在
上的奇函数,当
时,函数解析式为
.
(Ⅰ)求的值,并求出
在
上的解析式;
(Ⅱ)求在
上的最值.
某中学社团部志愿者协会共有6名男同学,4名女同学. 在这10名同学中,3名同学来自动漫社,其余7名同学来自摄影社、话剧社等其他互不相同的七个社团. 现从这10名同学中随机选取3名同学,到社区参加志愿活动(每位同学被选到的可能性相同).
(Ⅰ)求选出的3名同学是来自互不相同社团的概率;
(Ⅱ)设为选出的3名同学中女同学的人数,求随机变量
的分布列和数学期望.
已知函数,
.
(Ⅰ)求的最小正周期;
(Ⅱ)求在闭区间
上的最大值和最小值.
已知函数,其中
为实数,常数
.
(1) 若是函数
的一个极值点,求
的值;
(2) 当取正实数时,求函数
的单调区间;
(3) 当时,直接写出函数
的所有减区间.
如图,椭圆的左焦点为
,过点
的直线交椭圆于
两点.
的最大值是
,
的最小值是
,满足
.
(1) 求该椭圆的离心率;
(2) 设线段的中点为
,
的垂直平分线与
轴和
轴分别交于
两点,
是坐标原点.记
的面积为
,
的面积为
,求
的取值范围.