在Rt中,∠F="90°,点B、C分别在AD、FD上,以AB为直径的半圆O" 过点C,
联结AC,将△AFC 沿AC翻折得,
且点E恰好落在直径AB上.
(1)判断:直线FC与半圆O的位置关系是_____________
__;并证明你的结论.
(2)若OB="BD=2,求CE的长."
(本题满分8分) 东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划.某校决定对学生感兴趣的球类项目(A:足球, B:篮球, C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图).
(1)求出该班学生人数;
(2)将统计图补充完整;
(3)若该校共有学生3500名,请估计有多少人选修足球?
(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.
2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度,小明为了解市政府调整水价方案的社会反响,随机访问了自己居住小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.
小明发现每月每户的用水量在5m3﹣35m3之间,有8户居民对用水价格调价涨幅抱无所谓,不会考虑用水方式的改变,根据小明控制的图表和发现的信息,完成下列问题:
(1)n= ,小明调查了 户居民,并补全图1;
(2)每月每户用水量的中位数和众数分别落在什么范围?
(3)如果小明所在小区有1800户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少.
(本小题满分7分)
“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据图中提供的信息,解答下列问题:
(1)补全条形统计图;
(2)估计该市这一年(365天)空气质量达到“优”和“良”的总天数;
(3)计算随机选取这一年内的某一天,空气质量是“优”的概率.
2010年5月1日,第41届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A:不了解,B:一般了解,C:了解较多,D:熟悉).请你根据图中提供的信息解答以下问题:
(1)求该班共有多少名学生;
(2)在条形统计图中,将表示“一般了解”的部分补充完整;
(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;
(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少?
(1)已知m是方程的一个根,求
的值;
(2)一次函数与反比例函数
(
)的图象都经过点A(1,m),
的图象与x轴交于点B.
①求点B的坐标及反比例函数的表达式;
②点C(0,﹣2),若四边形ABCD是平行四边形,请在直角坐标系内画出▱ABCD,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.