游客
题文

已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD. 探究下列问题:
(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD=            
(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD=            
(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.

图1              图2                   图3

科目 数学   题型 解答题   难度 较难
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

(本题8分)如图,在10×6的正方形网格中,每个小正方形的边长均为1,线段AB的端点A、B均在格点上.分别在图甲和图乙中作出以AB为一腰的等腰△ABC,使其顶角分别为直角和钝角,点C在格点上,并直接写出△ABC的周长。

(本题10分,每小题5分)
(1)计算:
(2)解方程组:

(本小题满分9分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).

(1)求抛物线的解析式及抛物线与x轴的另一交点C的坐标;
(2)D为坐标平面上一点,且以A、B、C、D为顶点的四边形是平行四边形,写出点D的坐标;
(3)如图2,点E(x,y)是抛物线上位于第四象限的一点,四边形OEAF是以OA为对角线的平行四边形.
①当□OEAF的面积为24时,请判断□OEAF是矩形吗?是菱形吗?
②是否存在点E,使□OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

(本小题满分9分)如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(12,0)、(12,6),直线与y轴交于点P,与边OA交于点D,与边BC交于点E.

(1)若,求k的值;
(2)在(1)的条件下,当直线绕点P顺时针旋转时,与直线BC和x轴分别交于点N、M,问:是否存在NO平分∠CNM的情况?若存在,求线段DM的长;若不存在,请说明理由;
(3)在(1)的条件下,将矩形OABC沿DE折叠,若点O落在边BC上,求出该点坐标;若不在边BC上,求将(1)中的直线沿y轴怎样平移,使矩形OABC沿平移后的直线折叠,点O恰好落在边BC上.

(本小题满分9分)如图,已知A),B(﹣1,2)是一次函数与反比例函数图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.

(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号