已知二次函数的图象与
轴交于点
(
,0)、点
,
与轴交于点
.
(1)求点坐标;
(2)点从点
出发以每秒1个单位的速度沿线段
向
点运动,到达点
后停止运动,过点
作
交
于点
,将四边形
沿
翻折,得到四边形
,设点
的运动时间为
.
①当为何值时,点
恰好落在二次函数
图象的对称轴上;
②设四边形
落在第一象限内的图形面积为
,求
关于
的函数关系式,并求出
的最大值.
先化简,再求值:(x﹣1)2+x(x+2),其中x=.
如图,一次函数y=2x﹣2的图象与x轴、y轴分别相交于B、A两点,与反比例函数的图象在第一象限内的交点为M(3,m).
(1)求反比例函数的解析式;
(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由.
某公司从2009年开始投入技术改造资金,经技术改进后,其产品的生产成本不断降低,具体数据如表:
年度 |
2009 |
2010 |
2011 |
2012 |
投入技改资金x(万元) |
2.5 |
3 |
4 |
4.5 |
产品成本y(万元/件) |
7.2 |
6 |
4.5 |
4 |
(1)试判断:从上表中的数据看出,y与x符合你学过的哪个函数模型?请说明理由,并写出它的解析式.
(2)按照上述函数模型,若2013年已投入技改资金5万元
①预计生产成本每件比2012年降低多少元?
②如果打算在2013年把每件产品的成本降低到3.2万元,则还需投入技改资金多少万元?
如图所示,将长方形ABCD沿直线BD折叠,使C点落在C′处,BC′交AD于E.
(1)求证:BE=DE;
(2)若AD=8,AB=4,求△BED的面积.
已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时,y=1.求x=﹣时,y的值.