列方程或方程组解应用题:
我区教委要求各学校师生开展“彩虹读书活动”. 某校九年级一班和九年级二班的学生向学校图书馆借课外读物共196本,一班为每位学生借3本,二班为每位学生借2本,一班借的课外读物数量比二班借的课外读物数量多44本,求九年级一班和二班各有学生多少人?
如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E为AB中点,EF∥DC交BC于点F,求EF的长.
已知:关于x的一元二次方程有两个不相等的实数根.
(1)求k的取值范围;
(2)请选择一个k的正整数值,并求出方程的根.
(本题满分8分)
已知:如图,四边形ABCD是平行四边形,△ADE和△BCF都是等边三角形.
求证:BD和EF互相平分.
用适当的方法解下列方程
(1)(用配方法) (2)3x(x-1)=2-2x
已知等边△ABC和Rt△DEF按如图所示的位置放置,点B,D重合,且点E、B(D)、
C在同一条直线上.其中∠E=90°, ,
,现将△DEF
沿直线BC以每秒个单位向右平移,直至E点与C 点重合时停止运动,设运动时
间为t秒.
(1) 试求出在平移过程中,点F落在△ABC的边上时的t值;
(2) 试求出在平移过程中△ABC和Rt△DEF重叠部分的面积s与t的函数关系式;
(3) 当D与C重合时,点H为直线DF上一动点,现将△DBH绕点D顺时针旋转60°得到
△ACK,则是否存在点H使得△BHK的面积为,若存在,试求出CH的值;若不存在,请说明理由.