(本小题满分12分)
甲,乙,丙三个同学同时报名参加某重点高校2012年自主招生.高考前自主招生的程序为审核材料和文化测试,只有审核过关后才能参加文化测试,文化测试合格者即可获得自主招生入选资格.因为甲,乙,丙三人各有优势,甲,乙,丙三人审核过关的概率分别为0.5,0.6,0.4,审核过关后,甲,乙,丙三人文化测试合格的概率分别为0.6,0.5,0.75.
(1)求甲,乙,丙三人中只有一人通过审核的概率;
(2)设甲,乙,丙三人中获得自主招生入选资格的人数为,求随机变量
的期望.
如图,在中,
,垂足为
,且
.
(Ⅰ)求的大小;
(Ⅱ)设为
的中点,已知
的面积为15,求
的长
(本小题满分14分)在周长为定值的中,已知
,动点
的运动轨迹为曲线G,且当动点
运动时,
有最小值
.
(1) 以所在直线为
轴,线段
的中垂线为
轴建立直角坐标系,求曲线
的方程;
(2) 过点作圆
的切线
交曲线
于
,
两点.将线段MN的长|MN|表示为
的函数,并求|MN|的最大
值.
(本小题满分13分)已知,函数
,
.
(1)判断函数在
区间
上的单调性(其中
为自然对数的
底数);
(2)是否存在实数,使曲线
在点
处的切线与
轴垂直
若存在,求出的值;若不存在,请说明理由.
本小题满分12分)如图菱形的边长为
,
,
.将菱形
沿对角线
折起,得到三棱锥
,
点
是棱
的中点,
.
(1) 求证:平面
;
(2) 求证:平面平面
;
(3) 求三棱锥的体积.
(本小题满分12分)已知直线:
与直线
:
互相平行,经过点
的直线
与
,
垂直,且被
,
截得的线段长为
,试求直线
的方程.