游客
题文

 
某私营玩具厂招工广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,且计件工资不少于1000元时,每月另加福利工资100元,按月结算……”.  该厂只生产两种玩具:小狗和小汽车,熟练工人晓凤一月份领工资1145元,她记录了如下一些数据:

(1). 根据表格中的信息,试求出做1个小汽车所需时间和计件工资各是多少?
(2). 设晓凤某月生产小狗x个,小汽车y个,月工资(计件工资+福利工资=月工资)为W元.试求W与x的函数关系式.(不需写出自变量x的取值范围)
8分
(3). 有一天,厂方从销量方面考虑,对生产作了调整:每个工人每月生产小狗的个数不少于生产小汽车个数的2倍,假设晓凤的工作效率不变,且服从厂家安排,请运用数学知识说明厂家招工广告是否有欺诈行为.
0分

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

如图,已知△OAB的顶点A(﹣6,0),B(0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC.

(1)写出C,D两点的坐标;
(2)求过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标;
(3)证明AB⊥BE.

如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.连接OC交AE于点H。

(1)求证:GC⊥OC.
(2)求证:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的长.

已知函数y=mx2-6x+1(m是常数).
⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
⑵若该函数的图象与x轴只有一个交点,求m的值.

如图:在△ABC中,AB=2,BC=2,AC=4,点O是AC的中点;回答下列问题:

(1)∠BAC=°
(2)画出将△ABC绕点O旋转180°得到的△A1DC1(A→A1B→D C→C1),写出四边形ABCD的形状。
(3)尺规作图:在图中作出△ABC的高线AE(保留作图痕迹),并回答在四边形ABCD的边上(点A除外)是否存在点F,使∠EAC=∠EFC; 若存在点F,写出这样的点F一共有几个?并直接写出DF的长。若不存在这样的点F,请简要说明理由。

已知关于x的方程
(1)若这个方程有实数根,求k的取值范围;
(2)若这个方程有一个根为1,求k的值;
(3)若以方程的两个根为横坐标、纵坐标的点恰在反比例函数的图象上,求满足条件的m的最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号