(本小题满分12分)已知数列{an},a1=1,an=λan-1+λ-2(n≥2).
(1)当λ为何值时,数列{an}可以构成公差不为零的等差数列,并求其通项公式;
(2)若λ=3,求数列{an}的通项公式an.
(满分12分)已知向量与
互相垂直,其中
.
(1)求和
的值;
(2)求函数的值域。
(满分12分)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足。
(Ⅰ)求角C的大小;
(Ⅱ)求的最大值。
已知函数的两条切线PM、PN,切点分别为M、N.
(I)当时,求函数
的单调递增区间;
(II)设|MN|=,试求函数
的表达式;
(III)在(II)的条件下,若对任意的正整数,在区间
内总存在
成立,求m的最大值.
如图,点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于
轴上方,
.
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离
的最小值.
已知函数的图象在点M(-1,f(-1))处的切线方程为x+2y+5=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.