已知抛物线的准线为,焦点为,圆的圆心在轴的正半轴上,且与轴相切,过原点作倾斜角为的直线,交于点,交圆于另一点,且(1)求圆和抛物线C的方程;(2)若为抛物线C上的动点,求的最小值;(3)过上的动点Q向圆作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.
如果实数x、y满足x+y-4x+1=0,求的最大值与最小值。
如果直线l将圆平分,且不通过第四象限,求l的斜率的取值范围。
已知圆方程,过点A(2,3)作圆的任意弦,求这些弦的中点P的轨迹方程。
过圆外一点p(2,1)引圆的切线,求切线方程。
两平行直线L1,L2分别过A(1,0) 与 B(0,5)点,若L1与L2之间的距离为5,求这两直线的方程
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号