(本小题满分14分)设(e为自然对数的底)。
(1)求p与q的关系;
(2)若在其定义域为单调函数,求p的取值范围。
(3)证明:。
设椭圆的离心率
右焦点到直线
的距离
,
为坐标原点。
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作两条互相垂直的射线,与椭圆
分别交于
两点,证明点
到直线
的距离为定值,并求弦
长度的最小值.
如图多面体PQABCD由各棱长均为2的正四面体和正四棱锥拼接而成
(Ⅰ)证明PQ⊥BC;
(Ⅱ)若M为棱CQ上的点且,
求的取值范围,使得二面角P-AD-M为钝二面角。
已知等差数列的前
项和为
,等比数列
的前
项和为
,它们满足
,
,
,且当
时,
取得最小值.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)令,如果
是单调数列,求实数
的取值范围.
(Ⅰ)求函数
图像的对称轴方程;
(Ⅱ)设的三个角
所对的边分别是
,且
,
成公差大于
的等差数列,求的值.
过直线上的动点
作抛物线
的两条切线
,其中
为切点.
⑴若切线的斜率分别为
,求证:
为定值;
⑵求证:直线恒过定点.