(本小题满分12分)
已知展开式中的二项式系数的和比
展开式的二项式系数的和大
,求
展开式中的系数最大的项和系数最小的项.
如图,平面
,
是矩形,
,点
是
的中点,点
是边
上的动点.
(Ⅰ)求三棱锥的体积;
(Ⅱ)当点为
的中点时,试判断
与平面
的位置关系,并说明理由;
(Ⅲ)证明:无论点在边
的何处,都有
.
两城相距
,在两地之间距
城
处
地建一核电站给
两城供电.为保证城市安全,核电站距城市距离不得少于
.已知供电费用(元)与供电距离(
)的平方和供电量(亿度)之积成正比,比例系数
,若
城供电量为
亿度/月,
城为
亿度/月.
(Ⅰ)把月供电总费用表示成
的函数,并求定义域;
(Ⅱ)核电站建在距城多远,才能使供电费用最小,最小费用是多少?
设定义域为的函数
(Ⅰ)在平面直角坐标系内作出函数的图象,并指出
的单调区间(不需证明);
(Ⅱ)若方程有两个解,求出
的取值范围(只需简单说明,不需严格证明).
(Ⅲ)设定义为的函数
为奇函数,且当
时,
求
的解析式.
定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.
请对上面定理加以证明,并说出定理的名称及作用.
(1)计算.
(2)若,求
的值.