一条光线从点P(6,4)射出,与x轴相较于点Q(2,0),经x轴反射,求入射光线和反射光线所在的直线方程。
(本小题满分12分)已知定义在R上的单调函数,存在实数
,使得对于任意实数
,总有
恒成立。
(Ⅰ)求的值;(Ⅱ)若
,且对任意
,有
,求{an}的通项公式;
(Ⅲ)若数列{bn}满足,将数列{bn}的项重新组合成新数列
,具体法则如下:
,……,求证:
。
已知椭圆的对称中心为原点O,焦点在
轴上,离心率为
,且点(1,
)在该椭圆上.
(I)求椭圆的方程;
(II)过椭圆的左焦点
的直线
与椭圆
相交于
两点,若
的面积为
,求圆心在原点O且与直线
相切的圆的方
程.
已知数列是首项为
,公比
的等比数列,,
设,数列
.
(1)求数列的通项公式;(2)求数列
的前n项和Sn.
在直三棱柱ABC—A1B1C1中,,P为A1C1的中点,AB=BC=kPA。
(I)求三棱锥P—AB1C与三棱锥C1—AB1P的体积之比;
(II)当k为何值时,直线PA
(本小题满分12分)某人上楼梯,每步上一阶的概率为,每步上二阶的概率为
,设该人从台阶下的平台开始出发,到达第n阶的概率为
。
(Ⅰ)求;(Ⅱ)该人共走了5步,求
该人这5步共上的阶数ξ的数学期望。