如图,设是单位圆和
轴正半轴的交点,
是单位圆上
的两点,是坐标原点,
,
.
(1)若,求
的值;
(2)设函数,求
的值域.
如图,在△ABC中,∠C=90°,BC=8,AB=10,O为BC上一点,以O为圆心,OB为半径作半圆与BC边、AB边分别交于点D、E,连接DE。
(1)若BD=6,求线段DE的长;
(2)过点E作半圆O的切线,交AC于点F,
证明:AF=EF。
已知函数。
(1)判断函数的单调性;
(2)证明:
抛物线在点P处的切线
分别交x轴、y轴于不同的两点A、B,
。当点P在C上移动时,点M的轨迹为D。
(1)求曲线D的方程:
(2)圆心E在y轴上的圆与直线相切于点P,当|PE|=|PA|,求圆的方程。
如图,在四棱锥P—ABCD中,PA⊥底面ABCD,ABCD是直角梯形,AB⊥BC,AB∥CD,AB=2BC=2CD=2。
(2)若∠PDC=120°,求四棱锥P—ABCD的体积。
金融机构对本市内随机抽取的20家微小企业的产业结构调整及生产经营情况进行评估,根据得分将企业评定为优秀、良好、合格、不合格四个等级,金融机构将根据等级对企业提供相应额度的资金支持。
(1)在答题卡上作出频率分布直方图,并由此估计该市微小企业所获资金支持的均值;
(2)金融机构鼓励得分前2名的两家企业A、B随机收购得分后2名的两家企业a、b中的一家,求A、B企业选择收购同一家企业的概率。