某房屋开发公司用100万元购得一块土地,该地可以建造每层1000m2的楼房,楼房的总建筑面积(即各层面积之和)每平方米平均建筑费用与建筑高度有关,楼房每升高一层,整幢楼房每平方米建筑费用增加20元。已知建筑5层楼房时,每平方米建筑费用为400元,公司打算造一幢高于5层的楼房,为了使该楼房每平方米的平均综合费用最低(综合费用是建筑费用与购地费用之和),公司应把楼层建成几层?
(本小题满分7分)选修4-4:坐标系与参数方程
已知直线的参数方程:
(
为参数)和圆
的极坐标方程:
.
(1)求圆的直角坐标方程;
(2)判断直线与圆
的位置关系.
(本小题满分7分)选修4-2:矩阵与变换
已知矩阵.
(1)矩阵对应的变换把直线
变为直线
,求直线
的方程;
(2)求的逆矩阵
.
(本小题满分14分)已知函数(
).
(1)若为函数
的极值点,求
的值;
(2)若,
已知
,
,若直线
、
及直线
与函数
的图象所围成的封闭图形如阴影部分所示,求阴影面积
关于
的函数
的最小值
;
证明不等式:
.
(本小题满分13分)已知中心在原点,焦点在轴上的椭圆
过点
,离心率
.
(1)求椭圆的方程;
(2)如图,动直线与椭圆
有且仅有一个公共点,
求
,
满足的关系式;
如图,
、
为椭圆
的左、右焦点,作
,
,垂足分别为
、
,四边形
的面积
是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
(本小题满分13分)如图1,在中,
,
,
,
、
分别为
、
的中点,连接
并延长交
于
,将
沿
折起,使平面
平面
,如图2所示.
(1)求证:平面
;
(2)求平面与平面
所成的锐二面角的余弦值;
(3)在线段上是否存在点
使得
平面
?若存在,请指出点
的位置;若不存在,说明理由.