21.(本小题满分14分)
已知直线过抛物线
的焦点
且与抛物线相交于两点
,自
向准线
作垂线,垂足分别为
.
(1)求抛物线的方程;
(2)证明:无论取何实数时,
,
都是定值;
(3)记的面积分别为
,试判断
是否成立,并证明你的结论.
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:∥平面
;
(2)求异面直线与
所成角的余弦值.
已知圆C经过A(1,1)、B(2,)两点,且圆心C在直线l:x-y+1=0上,求圆C的标准方程.
已知半径为的球内有一个内接正方体(即正方体的顶点都在球面上).
(1)求此球的体积;
(2)求此球的内接正方体的体积;
(3)求此球的表面积与其内接正方体的全面积之比.
已知函数满足:对任意
,都有
成立,且
时,
.
(1)求的值,并证明:当
时,
;
(2)判断的单调性并加以证明;
(3)若在
上递减,求实数
的取值范围.
设函数 (
).
(1)若为偶函数,求实数
的值;
(2)已知,若对任意
都有
恒成立,求实数
的取值范围.