某自来水厂的蓄水池中有吨水,每天零点开始向居民供水,同时以每小时
吨的速度向池中注水.已知
小时内向居民供水总量为
吨
,问
(1)每天几点时蓄水池中的存水量最少?
(2)若池中存水量不多于吨时,就会出现供水紧张现象,则每天会有几个小时出现这种现象?
已知椭圆,
、
是椭圆的左右焦点,且椭圆经过点
.
(1)求该椭圆方程;
(2)过点且倾斜角等于
的直线
,交椭圆于
、
两点,求
的面积.
如图,直四棱柱底面
直角梯形,
∥
,
,
是棱
上一点,
,
,
,
,
.
(1)求直四棱柱的侧面积和体积;
(2)求证:平面
.
如图,、
是两个小区所在地,
、
到一条公路
的垂直距离分别为
,
,
两端之间的距离为
.
(1)某移动公司将在之间找一点
,在
处建造一个信号塔,使得
对
、
的张角与
对
、
的张角相等,试确定点
的位置.
(2)环保部门将在之间找一点
,在
处建造一个垃圾处理厂,使得
对
、
所张角最大,试确定点
的位置.
已知数列和
满足:
,其中
为实数,
为正整数.
(1)对任意实数,求证:
不成等比数列;
(2)试判断数列是否为等比数列,并证明你的结论.
如图,直四棱柱底面
直角梯形,
∥
,
,
是棱
上一点,
,
,
,
,
.
(1)求异面直线与
所成的角;
(2)求证:平面
.