提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/小时)
已知圆C的极坐标方程为,直线l的参数方程为
(t为常数,t∈R)
(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)求直线l与圆C相交的弦长.
如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合,已知AE的长为m,AC的长为n,AD,AB关于x的方程的两个根.
(Ⅰ)证明:C、B、D、E四点共圆;
(Ⅱ)若∠A=90°,且m=4,n=6,求C、B、D、E所在圆的半径.
已知函数,其中a∈R,
(Ⅰ)若a=0,求函数f(x)的定义域和极值;
(Ⅱ)当a=1时,试确定函数的零点个数,并证明.
已知抛物线,过点P(0,2)作直线l,交抛曲线于A,B两点,O为坐标原点,
(Ⅰ)求证:为定值;
(Ⅱ)求三角形AOB面积的最小值.
已知矩形ABCD,ED⊥平面ABCD,EF//DC.EF=DE=AD==2,O为BD中点.
(Ⅰ)求证:EO//平面BCF;
(Ⅱ)求几何体ABCDEF的体积.