提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/小时)
已知
是公差为
的等差数列,
是公比为
的等比数列.
(1)若
,是否存在
,有
说明理由;
(2)找出所有数列
和
,使对一切
,
,并说明理由;
(3)若
试确定所有的
,使数列
中存在某个连续
项的和是数列
中的一项,请证明.
已知函数
的反函数.定义:若对给定的实数
,函数
与
互为反函数,则称
满足"
和性质";若函数
与
互为反函数,则称
满足"
积性质".
(1)判断函数
是否满足"1和性质",并说明理由;
(2)求所有满足"2和性质"的一次函数;
(3)设函数
对任何
,满足"
积性质".求
的表达式.
已知双曲线 ,设过点 的直线 的方向向量
(1)当直线
与双曲线
的一条渐近线
平行时,求直线
的方程及
与
的距离;
(2)证明:当
时,在双曲线
的右支上不存在点
,使之到直线
的距离为
.
有时可用函数
描述学习某学科知识的掌握程度,其中
表示某学科知识的学习次数(
),
表示对该学科知识的掌握程度,正实数
与学科知识有关.
(1)证明:当
时,掌握程度的增加量
总是下降;
(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为
,
,
.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.
如图,在直三棱柱 中, ,求二面角 的大小.