游客
题文

(本小题满分13分)某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度逃窜.
(Ⅰ)若巡逻艇计划在正东方向进行拦截,问巡逻艇应行驶到什么位置进行设卡?
(Ⅱ)若巡逻艇立即以14海里/小时的速度沿着直线方向追击,问经多少时间后巡逻艇恰追赶上该走私船?

科目 数学   题型 解答题   难度 中等
知识点: 解三角形
登录免费查看答案和解析
相关试题

已知全集R,,.
(1)
(2)若不等式的解集为,求的值

设函数f(x)=lnx-ax+-1.
(1) 当a=1时, 过原点的直线与函数f(x)的图象相切于点P, 求点P的坐标;
(2) 当0<a<时, 求函数f(x)的单调区间;
(3) 当a=时, 设函数g(x)=x2-2bx-, 若对于x1, [0, 1]使f(x1)≥g(x2)成立, 求实数b的取值范围.(e是自然对数的底, e<+1).

已知点, 是一个动点, 且直线的斜率之积为.
(1) 求动点的轨迹的方程;
(2) 设, 过点的直线两点, 若对满足条件的任意直线, 不等式恒成立, 求的最小值.

已知函数上是增函数
(1)求实数的取值集合
(2)当取值集合中的最小值时, 定义数列;满足, , 设, 证明:数列是等比数列, 并求数列的通项公式.
(3)若, 数列的前项和为, 求.

如图, 三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC, ∠ACB =" 90°," E是棱CC1上动点, F是AB中点, AC =" 1," BC =" 2," AA1 =" 4."

(1) 当E是棱CC1中点时, 求证: CF∥平面AEB1;
(2) 在棱CC1上是否存在点E, 使得二面角A—EB1—B
的余弦值是, 若存在, 求CE的长, 若不存在,
请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号