已知函数图像上点
处的切线与直线
平行(其中),
(I)求函数的解析式;
(II)求函数上的最小值;
(III)对一切恒成立,求实数t的取值范围。
已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
是抛物线
的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的动直线L交椭圆C
于 A.B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理
由.
已知曲线在
点
处的切线斜率为
(Ⅰ)求的极值;
(Ⅱ)设在(一∞,1)上是增函数,求实数
的取值范围
已知四棱锥P—ABCD中,平面ABCD,底面ABCD为菱形,
,AB=
PA=2,E.F分别为B C.PD的中点。
(Ⅰ)求证:PB//平面AFC;
(Ⅱ)求平面PAE与平面PCD所成锐二面角的余弦值。
某公司有电子产品件,合格率为96%,在投放市场之前
,决定对该产品进行最后检验,为了减少检验次数,科技人员采用打包的形式进行
,即把
件打成一包,对这
件产品进行一次性整体检验,如果检测仪器显示绿灯,说明该包产品均为合格品;如果检测仪器显示红灯,说明该包产品至少有一件不合格,须对该包产品一共检测了
次
(1)探求检测这件产品的检测次数
;
(2)如果设,要使检测次数最少,则每包应放多少件产品?
在△ABC中,已知内角A.B.C所对的边分别为a.b.c,且
(1) 若,且
,求
的面积;
(2)已知向量(sinA,cosA),
(cosB,-sinB),求|
|的取值范围