已知函数.
(Ⅰ)求函数的最小正周期及在区间
上的最大值和最小值.
(Ⅱ)若,
.求
的值
5名工人独立地工作,假定每名工人在1小时内平均12分钟需要电力(即任一时刻需要电力的概率为12/60)
(1)设X为某一时刻需要电力的工人数,求 X的分布列及期望;
(2)如果同一时刻最多能提供3名工人需要的电力,求电力超负荷的概率,并解释实际意义.
已知等比数列{an}的首项为a,公比为 q,其前n项和为Sn用a和q表示Sn,并证明你的结论.
如图所示,多面体EF﹣ABCD中,底面ABCD为等腰梯形,AB∥CD,四边形ACFE为矩形,且平面ACFE⊥平面ABCD,AD=DC=BC=CF=1,AC⊥BC,∠ADC=120°
(1)求证:BC⊥AF
(2)求平面BDF与平面CDF所成夹角的余弦值.
已知向量m=(cosx,sinx),n=(cosx,cosx)(x∈R),设函数f(x)=m·n
(1)求 f(x)的解析式,并求最小正周期.
(2)若函数 g(x)的图像是由函数 f(x)的图像向右平移个单位得到的,求g(x)的最大值及使g(x)取得最大值时x的值.
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2=
.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:
AB=|x1-x2|==
=
=
.
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.