已知:以点C (t, )(t∈R , t≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点
(1)求△OAB的面积的值
(2)设直线y = –2x+4与圆C交于点M, N,若OM = ON,求圆C的方程
数列的各项都是正数,前
项和为
,且对任意
,都有
.
(1)求证:;(2)求数列
的通项公式。
如图1,四棱锥中,
底面
,面
是直角梯形,
为侧棱
上一点.该四棱锥的俯视图和侧(左)视图如图2所示.
(1)证明:平面
;
(2)线段上是否存在点
,使
与
所成角的余弦值为
?若存在,找到所有符合要求的点
,并求
的长;若不存在,说明理由.
已知函数
(1)求的最小正周期和值域;
(2)在中,角
所对的边分别是
,若
且
,试判断
的形状.
袋中装有大小相同的2个白球和3个黑球.
(1)采取放回抽样方式,从中依次摸出两个球,求两球颜色不同的概率;
(2)采取不放回抽样方式,从中依次摸出两个球,记为摸出两球中白球的个数,
求的期望.
已知函数,
,其中
.
(1)若是函数
的极值点,求实数
的值;
(2)若对任意的(
为自然对数的底数)都有
≥
成立,求实数
的取值范围.