(满分12分)某家公司每月生产两种布料A和B,所有原料是三种不同颜色的羊毛,下表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的
总量。
羊毛颜色 |
每![]() |
供应量/ kg |
|
布料A |
布料B |
||
红 |
4 |
4 |
1400 |
绿 |
6 |
3 |
1800 |
黄 |
2 |
6 |
1800 |
已知生产每匹布料A、B的利润分别为120元、80元。那么如何安排生产才能够产生最大的利润?最大的利润是多少?
设
和
是函数
的两个极值点.
(Ⅰ)求
和
的值;
(Ⅱ)求 的单调区间
如图,平面 平面 ,四边形 与 都是直角梯形, 分别为 中点.
(Ⅰ)证明:四边形
是平行四边形;
(Ⅱ)
四点是否共面?为什么?
(Ⅲ)设
,证明:平面
平面
;
设进入某商场的每一位顾客购买甲种商品的概率为 ,购买乙种商品的概率为 ,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的3位顾客中至少有2位顾客既未购买甲种也未购买乙种商品的概率。
求函数 的最大值与最小值.
设 为实数,函数 .
(1)若 ,求 的取值范围;
(2)求 的最小值;
(3)设函数 ,直接写出(不需给出演算步骤)不等式 的解集.