一个口袋中装有若干个均匀的红球和白球,从中摸出一个红球的概率是.有放回地摸球,每次摸出一个,有3次摸到红球即停止.
(1)求恰好摸5次停止的概率;
(2)记5次之内(含5次)摸到红球的次数为X,求随机变量X的分布列.
已知.
(1)若,求曲线
在点
处的切线方程;
(2)若求函数
的单调区间;
(3)若不等式恒成立,求实数
的取值范围.
如图,AB是⊙O的一条切线,切点为B,ADE、CFD都是⊙O的割线,AC=AB.
(1)证明:AC2=AD·AE
(2)证明:FG∥AC
在中,内角
所对边长分别为
,
,
.
(1)求;
(2)若的面积是1,求
.
设.
(1)若曲线在点
处的切线方程为
,求
的值;
(2)当时,求
的单调区间与极值.
在数学趣味知识培训活动中,甲、乙两名学生的5次培训成绩如下茎叶图所示:
(1)从甲、乙两人中选择1人参加数学趣味知识竞赛,你会选哪位?请运用统计学的知识说明理由;
(2) 从乙的5次培训成绩中随机选择2个,试求选到121分的概率.