(本小题满分12分)已知:抛物线的对称轴为
与
轴交于
两点,与
轴交于点
其中
、
(1)求这条抛物线的函数表达式.
(2)已知在对称轴上存在一点P,使得的周长最小.请求出点P的坐标.
(3)若点是线段
上的一个动点(不与点O、点C重合).过点D作
交
轴于点
连接
、
.设
的长为
,
的面积为
.求
与
之间的函数关系式.试说明
是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.
请同学们认真阅读下面材料,然后解答问题。
解方程(x2-1)2-5(x-1)+4=0
解:设y=x2-1
则原方程化为:y2-5y+4=0① ∴y1=1 y2=4
当y=1时,有x2-1=1,即x2=2 ∴x=±
当y=4时,有x2-1=4,即x2=5∴x=±
∴原方程的解为:x1=- x2=
x3=-
x4=
解答问题:
⑴填空:在由原方程得到①的过程中,利用________________法达到了降次的目的,体现了________________的数学思想。
⑵解方程-3(
-3)=0
如图3:△ABC是一块锐角三角形余料,边BC=120厘米,高AD=80厘米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?
设(4
分)
⑴当x取什么实数时,a,b,c都有意义。
⑵若a,b,c为 Rt△ABC三边长,求x的值
如图2,梯形ABCD中,AB∥CD,且AB=2CD,E、F分别是AB、BC的中点,EF与BD相交于点M。
⑴求证:△EDM∽△FBM
⑵若DB=9,求BM的长
先化简,再求值。,其中x=1,y=