游客
题文

如图,在平面直角坐标系中,直线分别交x轴、y轴于A、B两点.

(1)求A、B两点的坐标;
(2)设P是直线AB上一动点(点P与点A不重合),⊙P始终和x轴相切,和直线AB相交于C、D两点(点C的横坐标小于点D的横坐标).若P点的横坐标为m,试用含有m的代数式表示点C的横坐标;
(3)在(2)的条件下,若点C在线段AB上,当△BOC为等腰三角形时求m的值.

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

先化简,再从 - 1 ,0,1,2, 2 + 1 中选择一个合适的 x 的值代入求值. ( 1 - x x + 1 ) ÷ x 2 - 1 x 2 + 2 x + 1

计算: ( 2021 - π ) 0 - | 3 - 2 | - tan 60 °

如图,在直角坐标系中,二次函数 y = x 2 + bx + c 的图象与 x 轴相交于点 A ( - 1 , 0 ) 和点 B ( 3 , 0 ) ,与 y 轴交于点 C

(1)求 b c 的值;

(2)点 P ( m , n ) 为抛物线上的动点,过 P x 轴的垂线交直线 l : y = x 于点 Q

①当 0 < m < 3 时,求当 P 点到直线 l : y = x 的距离最大时 m 的值;

②是否存在 m ,使得以点 O C P Q 为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出 m 的值.

如图①, E F 是等腰 Rt Δ ABC 的斜边 BC 上的两动点, EAF = 45 ° CD BC CD = BE

(1)求证: ΔABE ΔACD

(2)求证: E F 2 = B E 2 + C F 2

(3)如图②,作 AH BC ,垂足为 H ,设 EAH = α FAH = β ,不妨设 AB = 2 ,请利用(2)的结论证明:当 α + β = 45 ° 时, tan ( α + β ) = tan α + tan β 1 - tan α tan β 成立.

如图,点 A 在以 BC 为直径的 O 上, ABC 的角平分线与 AC 相交于点 E ,与 O 相交于点 D ,延长 CA M ,连结 BM ,使得 MB = ME ,过点 A BM 的平行线与 CD 的延长线交于点 N

(1)求证: BM O 相切;

(2)试给出 AC AD CN 之间的数量关系,并予以证明.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号