(本题满分12分12分)设a,b∈R+,a+b=1.
(1)证明:ab+≥4+
=4
;
(2)探索、猜想,将结果填在括号内;
a2b2+≥( _________ );a3b3+
≥( _________ );
(3)由(1)(2)你能归纳出更一般的结论吗?请证明你得出的结论.
在平面直角坐标系中,已知点
,点
,点
.
(1)求经过A,B,C三点的圆P的方程;
(2)过直线上一点Q,作圆P的两条切线,切点分别为A,B,求证:直线AB恒过定点,并求出定点坐标.
已知数列是递增的等比数列,
为其前n项和,且
.
(1)求数列的通项公式;
(2)设数列满足
,求其前n项和为
.
设圆与圆
,动圆C与圆
外切,与圆
内切.
(1)求动圆C的圆心轨迹L的方程;
(2)已知点,P为L上动点,求
最小值.
平面直角坐标系中,已知椭圆
:
的离心率为
,且点(
,
)在椭圆
上.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆:
,
为椭圆
上任意一点,过点
的直线
交椭圆
于
两点,射线
交椭圆
于点
.
(i)求的值;
(ii)求面积的最大值.
已知函数
(I)求的单调区间;
(II)设曲线与
轴正半轴的交点为P,曲线在点P处的切线方程为
,求证:对于任意的正实数
,都有
;
(III)若方程有两个正实数根
且
,求证:
.