((本题13分)汽车和自行车分别从A地和C地同时开出,如下图,各沿箭头方向(两方向垂直)匀速前进,汽车和自行车的速度分别是10米/秒和5米/秒,已知AC=100米。(汽车开到C地即停止)
(1)经过秒后,汽车到达B处,自行车到达D处,设B、D间距离为
,写出
关于
的函数关系式,并求出定义域。
(2)经过多少时间后,汽车和自行车之间的距离最短?最短距离是多少?
数列记
(1)求b1、b2、b3、b4的值;
(2)求数列的通项公式及数列
的前n项和
如图所示,四棱锥P—ABCD中,ABAD,CD
AD,PA
底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。
(1)求证:BM∥平面PAD;
(2)在侧面PAD内找一点N,使MN平面PBD;
(3)求直线PC与平面PBD所成角的正弦。
在中,角
的对边分别为
,
。
(1)求的值;
(2)求的面积
已知椭圆C的焦点分别为和
,长轴长为6,设直线
交椭圆C于A、B两点,求线段AB的中点坐标
已知命题p:方程x2+mx+1=0有两个不相等的实根;q:不等式4x2+4(m–2)x+1>0的解集为R;若p或q为真,p且q为假,求实数m的取值范围。