((本题13分)汽车和自行车分别从A地和C地同时开出,如下图,各沿箭头方向(两方向垂直)匀速前进,汽车和自行车的速度分别是10米/秒和5米/秒,已知AC=100米。(汽车开到C地即停止)
(1)经过秒后,汽车到达B处,自行车到达D处,设B、D间距离为
,写出
关于
的函数关系式,并求出定义域。
(2)经过多少时间后,汽车和自行车之间的距离最短?最短距离是多少?
已知数列为等比数列,其前
项和为
,且满足
成等差数列.
(1)求数列的通项公式;
(2)已知,记
,求数列
前
项和
.
某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.
用煤(吨) |
用电(千瓦) |
产值(万元) |
|
甲产品 |
7 |
20 |
8 |
乙产品 |
3 |
50 |
12 |
但国家每天分配给该厂的煤、电有限,每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产量最大?最大日产量为多少?
已知;
,若
是
的充分而不必要条件,求实数
的范围.
已知A点坐标为,B点坐标为
,且动点
到
点的距离是
,线段
的
垂直平分线交线段
于点
.
(1)求动点的轨迹C方程.
(2)若P是曲线C上的点,,求的最大值和最小值.
已知F1、F2是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足
(O是坐标原点),
若椭圆的离心率等于
(1)求直线AB的方程;
(2)若三角形ABF2的面积等于,求椭圆的方程.