(本小题满分14分)已知为实数,对于实数
和
,定义运算“
”:
设
(1)若在
上为增函数,求实数
的取值范围;
(2)已知,且当
时,
恒成立,求
的取值范围.
已知函数(
是常数)在
处的切线方程为
,且
.
(Ⅰ)求常数的值;
(Ⅱ)若函数(
)在区间
内不是单调函数,求实数
的取值范围;
(Ⅲ)证明:.
已知数列的前
项和为
,
,
是
与
的等差中项(
).
(Ⅰ)证明数列为等比数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)是否存在正整数,使不等式
(
)恒成立,若存在,求出
的最大值;若不存在,请说明理由.
已知函数,
.
(Ⅰ)当,
时,求
的单调区间;
(2)当,且
时,求
在区间
上的最大值.
设数列满足:
,
,
.
(Ⅰ)求的通项公式及前
项和
;
(Ⅱ)已知是等差数列,
为前
项和,且
,
.求
的通项公式,并证明:
.
已知向量,
,设函数
,
.
(Ⅰ)求的最小正周期与最大值;
(Ⅱ)在中,
分别是角
的对边,若
的面积为
,求
的值.