已知函数,
.
(Ⅰ)当,
时,求
的单调区间;
(2)当,且
时,求
在区间
上的最大值.
(本小题满分12分)在某次足球比赛中,甲
、乙、丙三队进行单循环赛(即每两人比赛一场),共赛三场,每场比赛胜者得1分,输者得0分,没有平局;在每一场比赛中,甲胜乙的概率为
,甲胜丙的概率为
,乙
胜丙的概率为
.
(Ⅰ)求甲获得小组第一且丙获得小组第二的概率;
(Ⅱ)求三队得分相同的概率;
(Ⅲ)求甲不是小组第一的概率.
(本小题满分12分)已知函数是偶函数,
(1)求的值;(2)求函数
的单调区间.
(本小题满分12分)如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2.
(I)证明:AB1⊥BC1;
(II)求点B到平面AB1C1的距离;
(III)求二面角C1—AB1—A1的大小.
(本小题满分10分)已知函数
(1)求函数的最小正周期及当
为何值时
有最大值;
(2)令,判断函数
的奇偶性,并说明理由.
(本小题满分12分)
设、
分别是椭圆
的左、右焦点.
(1)若是该椭圆上的一个动点,求
的取值范围;
(2)设过定点Q(0,2)的直线与椭圆交于不同的两点M、N,且∠
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
(3)设是它的两个顶点,直线
与AB相交于点D,与椭圆相交于E、F两点.求四边形
面积的最大值.