(每小题8分,共16分)
(1)先化简:,然后从
,1,-1中选取一个能使结果为整数的数作为x的值代入求值.
(2)面对全球金融危机的挑战,我国政府毅然启动拉动内需的政策,改善民生.国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买入选产品,政府按原价购买总额的l3%给予补贴返还.某村委会组织部分农民到商场购买人选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为l5000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,问:冰箱、电视机各购买多少台?
如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.
(1)求证:⊙D与边BC也相切;
(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF.若AB=,求图中阴影部分的面积(结果保留π);
(3)假设⊙D的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动一周,当△MDF与△ABD的面积之比为时,求动点M经过的弧长(结果用含r 的式子表示,保留π).
随着人民生活水平的不断提高,大丰区家庭轿车的拥有量逐年增加.据统计,怡景小区2012年底拥有家庭轿车144辆,2014年底家庭轿车的拥有量达到196辆.2014年底小区拥有室内车位和露天车位共180个.假设该小区2012年底到2016年底家庭轿车拥有量的年平均增长率都相同.
(1)估计该小区到2015年底家庭轿车将达到多少辆?(结果四舍五入取整数)
(2)为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍.在投资款恰好用完的情况下求该小区可建两种车位各多少个?试写出所有可能的方案.并判断有没有方案能够满足2016年底小区所有轿车同时停车的需求?
已知关于x的方程x 2 – ( k + 2 )x +k 2 +1 = 0
(1)k取什么值时,方程有两个不相等的实数根?
(2)如果方程有两个实数根(
)且满足
,求k的值和方程的两根.
如图,有一石拱桥的桥拱是圆弧形,正常水位时水面宽AB="60" m,水面到拱顶距离CD="18" m.如果水面到拱顶的距离小于3.8 m,需要采取紧急措施以防流水对桥的危害.现洪水经过,测得水面宽MN="32" m,此时是否需要采取紧急措施?请说明理由.
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台.为了配合“双11”优惠促销活动,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?