选修4-1:几何证明选讲
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,直线OB交于⊙O于点E,D,连接EC,CD。
(1)试判断直线AB与⊙O的位置关系,并加以证明;
(2)若
,⊙O的半径为3,求OA的长。
已知函数
,其中a为常数,且
(1)若
是奇函数,求a的取值集合A;
(2)当a=-1时,设
的反函数为
,且函数
的图像与
的图像关于
对称,求
的取值集合B。
(3)对于问题(1)(2)中的A、B,当
时,不等式
恒成立,求x的取值范围。
数列
满足
,
.
(1)求
通项公式
;
(2)令
,数列
前
项和为
,
求证:当
时,
;
(3)证明:
.
已知数列
中,
,对于任意的
,有
(1)求数列
的通项公式;
(2)若数列
满足:
求数列
的通项公式;
(3)设
,是否存在实数
,当
时,
恒成立,若存在,求实数
的取值范围,若不存在,请说明理由.
已知
各项均为正数的数列
满足
,
,
.
(Ⅰ)求证:数列
是等比数列;
(Ⅱ)当
取何值时,
取最大值,并求出最大值;
(Ⅲ)若
对任意
恒成立,求实数
的取值范围.
1已知函数
,且
,
.
(Ⅰ)求
的值域
(Ⅱ)指出函数
的单调性(不需证明),并求解关于实数
的不等式
;
(Ⅲ)定义在
上的函数
满足
,且当
时
求方程
在区间
上的解的个数.