如图所示,在竖直方向上A、B两物体通过劲度系数为k的轻质弹簧相连,A放在水平地面上;B、C两物体通过细绳绕过轻质定滑轮相连,C放在固定的光滑斜面上.用手拿住C,使细线刚刚拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m,C的质量为4m,重力加速度为g,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后它沿斜面下滑,A刚离开地面时,B获得最大速度,求:
斜面倾角α.
B的最大速度VBm.
如图所示,竖直线
、
将竖直平面分成I、II、III三个区域,第I区域内有两带电的水平放置的平行金属板,板长L1=20cm,宽d=12.cm,两板间电压
;第II区域内右边界
与金属上极板等高的A点固定一负点电荷Q,使该点电荷激发的电场只在第II区域内存在(即在I、III区域内不存在点电荷激发的电场),II区域宽为L2=l0cm;在第III区域中仅在某处一个矩形区域内存在匀强磁场(图中未画出),磁感应强度B=0.1T,方向垂直纸面向外。现有一带电量
,质量
的正离子(不计重力),紧贴平行金属板的上边缘以
的速度垂直电场进人平行金属板,离子刚飞出金属板时,立即进人第II区域,飞离II区域时速度垂直于
进人第III区域,再经矩形匀强磁场后,速度方向与水平方向成740角斜向右上方射出。离子始终在同一平面内运动。(已知:sin370="0.6" , cos370=0.8,静电力常量
)
求:(1)离子射出平行金属板时,速度的大小和方向;
(2)A点固定的点电荷的电量Q;
(3)第III区域内的矩形磁场区域的最小面积。
如图所示,在水平绝缘轨道的末端N处,平滑连接一个半径为R的光滑绝缘的半圆形轨道,整个空间存在一个场强大小
,方向水平向左的匀强电场,并在半圆轨道区域内还存在一个垂直纸面向里的匀强磁场,磁感应强度
。现在有一个带正电的小物块(可看作质点),质量为m,电量为
,从距N点
的地方静止释放。已知物块与水平轨道之间的动摩擦因数
,重力加速度取g,求:
(1)小物块运动到轨道的最高点P时,小物块对轨道的压力;
(2)小物块从P点离开半圆轨道后,又落在水平轨道距N点多远的地方。
“嫦娥三号”在距月球表面高度为H的轨道上绕月球作匀速圆周运动,测得此时的周期为
。之后经减速变轨下降到距离月表面h高度时,着陆器悬停在空中(此位置速度可视为0),关闭反推发动机,着陆器以自由落体方式降落,在月球表面预选区将腿部支架扎进月球土层,成功实现软着陆。已知月球的半径为R,引力常为G.试求:
(1)月球的质量; (2)“嫦娥三号”关闭发动机后自由下落的时间。
如图所示,可视为质点的物块A、B、C放在倾角为37O、足够长的光滑、绝缘斜面上,斜面固定。A与B紧靠在一起,C紧靠在固定挡板上。物块的质量分别为mA=0.8kg、mB=0.4kg。其中A不带电,B、C的带电量分别为qB=+4×10-5C、qC=+2×10-5C,且保持不变。开始时三个物块均能保持静止。现给A施加一平行于斜面向上的力F,使A、B一起在斜面上做加速度为a=2m/s2的匀加速直线运动。经过一段时间物体A、B分离。(如果选定两点电荷在相距无穷远处的电势能为0,则相距为r时,两点电荷具有的电势能可表示为
。已知sin37O=0.6,cos37O=0.8,g=10m/s2,静电力常量
)求:
(1)未施加力F时物块B、C间的距离;
(2)A、B分离前A上滑的距离;
(3)A、B分离前力F所做的功。
风洞实验室能产生大小和方向均可改变的风力。如图所示,在风洞实验室中有足够大的光滑水平面,在水平面上建立xOy直角坐标系.质量m=0.5kg的小球以初速度v0=0.40m/s从O点沿x轴正方向运动,在0-2.0s内受到一个沿y轴正方向、大小F1=0.20N的风力作用;小球运动2.0s后风力变为F2(大小求知),方向为y轴负方向,又经过2.0s小球回到x轴。求
(1)2.0s末小球在y方向的速度;
(2)风力F2作用多长时间后,小球的速度变为与初速度相同;
(3)小球回到x轴上时的动能。