(本小题满分12分)
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度
(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当
时,车流速度
是车流密度
的一次函数.
(Ⅰ)当时,求函数
的表达式
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大,并求出最大值.(精确到1辆/小时)
已知函数,
.
(1)求的值;
(2)设,
,
,求
的值.
已知数列的前
项和为
,对于任意的
恒有
(1) 求数列的通项公式
(2)若证明:
已知函数
(1)已知任意三次函数的图像为中心对称图形,若本题中的函数图像以
为对称中心,求实数
和
的值
(2)若,求函数
在闭区间
上的最小值
在平面直角坐标系中,已知
,直线
, 动点
到
的距离是它到定直线
距离的
倍. 设动点
的轨迹曲线为
.
(1)求曲线的轨迹方程.
(2)设点, 若直线
为曲线
的任意一条切线,且点
、
到
的距离分别为
,试判断
是否为常数,请说明理由.
如图1,在等腰梯形CDEF中,CB、DA是梯形的高,,
,现将梯形沿CB、DA折起,使
且
,得一简单组合体
如图2示,已知
分别为
的中点.
图1图2
(1)求证:平面
;
(2)求证: ;
(3)当多长时,平面
与平面
所成的锐二面角为
?