(本小题满分14分)
已知二次函数满足:
,
,且该函数的最小值为1.
⑴ 求此二次函数的解析式;
⑵ 若函数的定义域为
=
.(其中
). 问是否存在这样的两个实数
,使得函数
的值域也为
?若存在,求出
的值;若不存在,请说明理由.
(本小题满分12分)
如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=.
(Ⅰ)求面ASD与面BSC所成二面角的大小;
(Ⅱ)设棱SA的中点为M,求异面直线DM与SB所成角的大小;
(Ⅲ)求点D到平面SBC的距离.
.(本小题满分12分)
已知椭圆的中心在坐标原点,焦点在
轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线过
且与椭圆相交于A,B两点,当P是AB的中点时,
求直线的方程.
(本小题满分12分)
设,求直线AD与平面
的夹
角。
(本小题满分10分)
已知命题若
是
的充分不必要条件,求
的取值范围
(本小题满分13分)
已知函数
(1)如果对任意恒成立,求实数a的取值范围;
(2)设实数的两个极
值点分别为
判断①
②
③
是否为定值?若是定值请求出;若不是定值,请把不是定
值的表示为函数
并求出
的最小值;
(3)对于(2)中的设
,试比较
(e为自然对数的底)的大小,并证明。