(本小题满分12分)设等差数列{}的前n项和为,且。(1)求数列{}的通项公式及前n项和公式;(2)设数列{}的通项公式为 ,是否存在正整数t,使得成等差数列?若存在,求出t和m的值;若不存在,请说明理由
( 12分)已知. (1)( 4分)化简; (2)( 8分)若,求的值.
已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。 (1)如果函数在上是减函数,在上是增函数,求的值。 (2)设常数,求函数的最大值和最小值;
已知. (1)证明:函数在上为增函数; (2)用反证法证明:方程没有负数根。
已知数列{an}的前n项和为Sn,,满足, (1)求的值;(2)猜想的表达式。
设函数, (1)解不等式; (2)若不等式的解集为R,求的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号