(本小题满分12分)口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(1)求甲赢且编号的和为6的事件发生的概率;(2)这种游戏规则公平吗?试说明理由.
已知抛物线C:,P为C上一点且纵坐标为2,Q,R是C上的两个动点,且. (1)求过点P,且与C恰有一个公共点的直线的方程; (2)求证:QR过定点.
已知四棱锥中,底面ABCD为的菱形,平面ABCD,点Q在直线PA上. (Ⅰ)证明:直线QC直线BD; (Ⅱ)若二面角的大小为,点M为BC的中点,求直线QM与AB所成角的余弦值.
设数列满足,设.[ (1)求证:是等比数列; (2)设的前n项和为,求的最小值.
中,内角的对边分别是,已知成等比数列,且. (Ⅰ)求的值; (Ⅱ)设,求的值.
设,. (Ⅰ)若在上有两个不等实根,求的取值范围; (Ⅱ)若存在,使得对任意的,都有成立,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号