如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF交CD于G,求∠1的度数。
为了方便学生安全出行,我市推出了学生公交专线.某校对学生出行情况作简要调查后,初步整理了一份信息(如图).根据信息,解答下列问题.
(1)求骑车和步行的人数;
(2)若坐学生公交的人数占总人数的30%,求坐普通公交的人数;
(3)为了鼓励学生选择坐学生公交出行,公交公司对公交专线的时间进行了调整,估计该校坐普通公交和坐学生公交的人数所占百分比的和不低于75%,求调整后至少有多少学生会选择坐学生公交?
如图,在直角坐标系中,O是坐标原点,点C的坐标是(0,3),抛物线经过点C,交x轴负半轴于点A.
(1)求c的值,并写出抛物线解析式;
(2)将△AOC绕点O顺时针旋转90°,得到△A’OC’.
①求点C’的坐标,并通过计算判断点C’是否在抛物线上;
②若将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△A’OC’的内部(不包括△A’OC’的边界),求m的取值范围(直接写出答案即可).
如图,两个同心圆的圆心为O,矩形ABCD的边AB为大圆的弦,边DC与小圆相切于点E,连接OE并延长交AB于点F.已知OA=4,AF=2.
(1)求AB的长;
(2)求阴影部分的面积.
如图,转盘被平均分成三块扇形,转动转盘,转动过程中,指针保持不动,转盘停止后,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.
(1)转动转盘一次,转到数字是3的区域的概率是多少?
(2)转动转盘两次,用画树状图或列表的方法求两次指针所指区域数字不同的概率;
(3)在第(2)题中,两次转到的区域的数字作为两条线段的长度,如果第三条线段的长度为5,求这三条线段能构成三角形的概率.
如图所示,由5个大小完全相同的小正方形摆成如图形状,请按要求作图.
(1)在图1中补画一个小正方形,使它成为一个轴对称图形,且对称轴只有1条;
(2)在图2中补画一个小正方形,使它成为一个轴对称图形,且对称轴多于1条;
(3)在图3中补画一个小正方形,使它成为一个中心对称图形,但不是轴对称图形.