(本题12分)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)。点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行。直线y=-x+m过点C,交y轴于D点.
⑴求抛物线的函数表达式;
⑵点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于 点G,求线段HG长度的最大值;
⑶在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.
)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.
(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?
(2)若单独租用一台车,租用哪台车合算?
如图,在菱形ABCD中,AB=10,sinA=,点E在AB上,AE=4,过点E作EF∥AD,交CD于点F.
(1)请写出菱形ABCD的面积:;
(2)若点P从点A出发以1个单位长度/秒的速度沿着线段AB向终点B运动,同时点Q从点E出发也以1个单位长度/秒的速度沿着线段EF向终点F运动,设运动时间为t(秒).
①当t=5时,求PQ的长;
②以P为圆心,PQ长为半径的⊙P是否能与直线AD相切?如果能,求此时t的值;如果不能,说明理由.
如图,在平面直角坐标系中,二次函数y=﹣+bx的图像经过点A(4,0).点E是过点C(2,0)且与y轴平行的直线上的一个动点,过线段CE的中点G作DF⊥CE交二次函数的图像于D、F两点.
(1)求二次函数的表达式.
(2)当点E落在二次函数的图像的顶点上时,求DF的长.
(3)当四边形CDEF是正方形时,请直接写出点E的坐标.
如图,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O 上,且∠BAC=∠CAD,过点C作CE⊥AD,垂足为点E.
(1)试判断CE与⊙O的位置关系,并说明理由;
(2)若AB=5,AC=4,求CE.
在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:
(1)A、C两村间的距离为km;
(2)求a的值和点P的坐标,并解释该点坐标所表示的实际意义;
(3)乙在行驶过程中,何时距甲10km?