游客
题文

问题再现
现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.

我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可以发现在一个顶点O周围围绕着4个正方形的内角.
试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着        
正六边形的内角.
问题提出
如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?
问题解决
猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?
分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.
验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:
,整理得:
我们可以找到惟一一组适合方程的正整数解为 .  
结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.
猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.
验证2:
结论2:                                                                     
                                                                              
上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.
问题拓广
请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.
猜想3:                                                                     .
验证3:
结论3:                                                                     
                                                                                .

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心 二元一次不定方程的应用 应用类问题
登录免费查看答案和解析
相关试题

两地相距45千米,图中折线表示某骑车人离地的距离与时间的函数关系.有一辆客车9点从地出发,以45千米/时的速度匀速行驶,并往返于两地之间.(乘客上、下车停留时间忽略不计)

(1)从折线图可以看出,骑车人一共休息次,共休息小时;
(2)请在图中画出9点至15点之间客车与地距离随时间变化的函数图象;
(3)通过计算说明,何时骑车人与客车第二次相遇.

某电信公司给顾客提供了两种手机上网计费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外,再以每分钟0.06元的价格按上网时间计费.假设顾客甲一个月手机上网的时间共有分钟,上网费用为元.
(1)分别写出顾客甲按AB两种方式计费的上网费元与上网时间分钟之间的函数关系式,并在下图的坐标系中作出这两个函数的图象;

(2)如何选择计费方式能使上网费更合算?

(1)某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个长方形场地成轴对称图形,你有好的设计方案吗?请在图22-1的长方形中画出你的设计方案;

(2)如图,有三条交叉的公路,现要在三条公路交叉所形成的区域内建一货运站A,使得货运站到三条公路的路程一样长,请在图22-2中画出,并标出货运站A的位置;

(1)如图1是一个重要公式的几何解释.请你写出这个公式;
(2)如图2,,且三点共线.
试证明

M是大于负50的立方根的最小整数,N是小于50的平方根的最大整数,求M加N的平方根,

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号