甲、乙两人分别骑自行车和摩托车从甲地到乙地
(1)谁出发较早,早多长时间?谁到达乙地早?早多长时间
(2)两人行驶速度分别是多少?
(3)分别求出自行车和摩托车行驶过程的函数解析式?
如图,四边形ABCD的对角线AC,BD相交于点O,。
求证:AB∥CD
先化简,后求值:,其中
计算:
如图16,在直角梯形ABCD中,AD∥BC,,AD=6,BC=8,
,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.
设点P,Q运动的时间是t秒(t>0).
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).
(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积.
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
如图,一次函数的图像与反比例函数
的图像交于
两点,与
轴交于点
,与
轴交于点
,已知
,点
的坐标为
,过点
作
轴,垂足为
。
(1)求反比例函数和一次函数的解析式;
(2)求的面积。
(3)根据图像回答:当x 为何值时,一次函数的函数值大于
反比例函数的函数值?