(本题6分)某人去水果批发市场采购苹果,他看中了A、B两家苹果。这两家苹果品质一样,零售价都为6元/千克,批发价各不相同。
A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠。
B家的规定如下表:
数量范围(千克) |
0~500 |
500以上~1500 |
1500以上~2500 |
2500以上 |
价 格(元) |
零售价的95% |
零售价的85% |
零售价的75% |
零售价的70% |
【表格说明:批发价格分段计算,如:某人批发苹果2100千克,则总费用=6×95%×500+6×85%×1000+6×75%×(2100-1500)】
(1)如果他批发600千克苹果,则他在A 家批发需要 元,在B家批发需要 元;
(2) 如果他批发x千克苹果(1500<x<2000),则他在A 家批发需要 元,在B家批发需要 元(用含x的代数式表示);
(3) 现在他要批发1800千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由。
如图,大楼AB、CD和大树EF的底端B、D、F在同一直线上,BF=FD=10米,AB=16米,某人在楼顶A处测得点C的仰角为22°,测得点E的俯角为45°.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)
(1)求大树EF的高度;
(2)求大楼CD的高度.
已知二次函数y=-x2+bx+c的图象与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)求b,c的值;
(2)将二次函数y=-x2+bx+c的图象先向下平移2个单位,再向左平移1个单位,直接写出经过两次平移后的二次函数的关系式.
如图,已知,正方形纸片ABCD的边长为4,点P在BC边上,BP=1,点E在AB边上,且∠BPE=60°,沿PE翻折△EBP得到△EB′P. F是CD边上一点,沿PF翻折△FCP得到△FC′P,使点Cˊ落在射线PBˊ上.
(1)求证:EB′// C′F;
(2)连接B′F、C′E,求证:四边形EB′F C′是平行四边形.
在统计数据时,我们将所有数值由小到大排列并分成四等份,每一部分大约包含25%的数据项,处于三个分割点位置的数从小到大分别记为Q1、Q2、Q3.再将最小值记为M,最大值记为N;
例如:某班共有男生23人,一次数学考试的成绩从小到大排列后M=38,Q1=60、Q2=76、Q3=91,N=100,将这几个数值按如图的方式绘制统计图,由于统计图的形状如箱子,我们把它称为“箱型图”.
该班女生共有23人,本次考试的成绩中:M=47,Q1=57、Q2=70、Q3=87,N=96.
(1)请在图中画出该班女生本次考试成绩的“箱型图”;
(2)请根据男生和女生的“箱型图”,结合所学的统计知识,评价该班男、女生的成绩.
某商场为了“五一”促销,举办抽奖活动,抽奖方案是:将如图的正六边形转盘等分成6个全等三角形,其中两个涂上灰色,顾客任意转动这个转盘2次,当转盘停止时,两次都指向灰色区域的即可获得奖品.
(1)求顾客获得奖品的概率;
(2)商场工作人员又提出了以下几个方案:
①抛掷一枚均匀的硬币3次,3次抛掷的结果都是正面朝上的即可获得奖品;
②一只不透明的袋子中,装有10个白球和20个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记下颜色后放回袋中并搅匀,再从中摸出一个球,两次都摸出白球的即可获得奖品;
③一只不透明的袋子中,装有2个白球和4个红球,这些球除颜色外都相同,搅匀后从中任意摸出两个球,两个都是白球的即可获得奖品;
④任意抛掷一枚均匀的骰子两次,两次朝上的点数都是3的倍数的即可获得奖品;
这几种方案中和原方案获奖概率相同的有(填序号).