(本小题14分)对于在上有意义的两个函数
与
,如果对任意的
,均有
,则称
与
在
上是接近的.现在有两个函数
与
,给定区间
.
(1)若,求
在
上的值域,判断
与
是否在给定区间上接近;
(2)若与
在给定区间
上都有意义,求
的取值范围;
(3)若与
在给定区间
上是接近的,求
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
已知圆锥曲线(
是参数)和定点
,
是圆锥曲线的左、右焦点。
(1)求经过点垂直于直线
的直
线l的参数方程;
(2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线的极坐标方程.
(本小题满分10分)选修4-1:几何证明选讲如图,CD是Rt△ABC的斜边AB上的高,E是BC上任意一点,EF⊥AB于F。
求证:
(本小题满分12分)如图,抛物线的顶点O在坐标原点,焦点在y轴的负半轴上,过点M(0,-2)作直线l与抛物线相交于A,B两点,且满足=(-4,-12).
(1)求直线l和抛物线的方程;
(2)当抛物线上一动点P在点A和B之间运动时,求ΔABP面积的最大值.
(本小题满分12分)已知函数f(x)=.
(1)若f(x)在上是增函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)在上的最小值和最大值。
(本小题满分12分)如图,在正三棱柱ABC-A1B1C1中,AB=4,AA1,
点D是BC的中点,点E在AC上,且DE⊥A1E
.
(1)证明:平面A1DE⊥平面ACC1A1;
(2)求直线AD和平面A1DE所成角的正弦值。