(本小题满分13分)已知函数(
(1)若函数在定义域上为单调增函数,求
的取值范围;
(2)设
(本小题满分12分)甲、乙两人参加某种选拔测试.在备选的道题中,甲答对其中每道题的概率都是
,乙能答对其中的
道题.规定每次考试都从备选的
道题中随机抽出
道题进行测试,答对一题加
分,答错一题(不答视为答错)减
分,至少得
分才能入选.
(1)求乙得分的分布列和数学期望;
(2)求甲、乙两人中至少有一人入选的概率.
(本小题满分12分)公差不为零的等差数列中,
且
成等比数列。
(1)求数列的通项公式;
(2)设,求数列
的通项公式
附加题:本题满分10分.已知是平面内两个定点,且
,若动点
与
连线的斜率之积等于常数
,求点
的轨迹方程,并讨论轨迹形状与
值的关系.
(本小题满分14分) 已知椭圆的中心在原点,焦点在
轴上,离心率等于
,它的一个顶点恰好是抛物线
的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)点,
,
,
在椭圆上,
、
是椭圆上位于直线
两侧的动点.
①若直线的斜率为
,求四边形
面积的最大值;
②当、
运动时,满足于
,试问直线
的斜率是否为定值?若是,请求出定值,若不是,请说明理由.
(本小题满分13分) 已知抛物线与直线
交于
,
两点.
(Ⅰ)求弦的长度;
(Ⅱ)若点在抛物线
上,且
的面积为
,求点P的坐标.