如图,抛物线 经过点 , ,与 轴正半轴交于点 ,且 ,抛物线的顶点为 ,对称轴交 轴于点 .直线 经过 , 两点.
(1)求抛物线及直线 的函数表达式;
(2)点 是抛物线对称轴上一点,当 的值最小时,求出点 的坐标及 的最小值;
(3)连接 ,若点 是抛物线上对称轴右侧一点,点 是直线 上一点,试探究是否存在以点 为直角顶点的 ,且满足 .若存在,求出点 的坐标;若不存在,请说明理由.
有公共顶点 的正方形 与正方形 按如图1所示放置,点 , 分别在边 和 上,连接 , , 是 的中点,连接 交 于点 .
【观察猜想】
(1)线段 与 之间的数量关系是 ,位置关系是 ;
【探究证明】
(2)将图1中的正方形 绕点 顺时针旋转 ,点 恰好落在边 上,如图2,其他条件不变,线段 与 之间的关系是否仍然成立?并说明理由.
如图,已知 中, .
(1)请按如下要求完成尺规作图(不写作法,保留作图痕迹).
①作 的角平分线 ,交 于点 ;
②作线段 的垂直平分线 与 相交于点 ;
③以点 为圆心,以 长为半径画圆,交边 于点 .
(2)在(1)的条件下,求证: 是 的切线;
(3)若 , ,求 的半径.
直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.
(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?
(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?
如图,正比例函数 与反比例函数 的图象交于点 ,过点 作 轴于点 , ,点 在线段 上,且 .
(1)求 的值及线段 的长;
(2)点 为 点上方 轴上一点,当 与 的面积相等时,请求出点 的坐标.