如图, 等腰梯形ABCD中,AB=15,AD=20,∠C=30º.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.
(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围.
(2)当五边形BCDNM面积最小时,请判断△AMN的形状.
A市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.求平均每次下调的百分率.
某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠
若0是关于的方程
的解;
求实数的值,并求出此时方程的解
根据要求解下列关于x的方程(用配方法解)
先化简,再求值:,其中
.
如图,抛物线与
轴交于
两点,与
轴相交于点
.连结AC、BC,B、C两点的坐标分别为B(1,0)、
,且当x=-10和x=8时函数的值
相等.
求a、b、c的值;
若点
同时从
点出发,均以每秒1个单位长度的速度分别沿
边运动,其中一个点到达终点时,另一点也随之停止运动.连结
,将
沿
翻折,当运动时间为几秒时,
点恰好落在
边上的
处?并求点
的坐标及四边形
的面积;
上下平移该抛物线得到新的抛物线,设新抛物线的顶点为D,对称轴与x轴的交点为E,若△ODE与△OBC相似,求新抛物线的解析式。