某城市按以下规定收取每月煤气费:用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费. 如甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费用为60×0.8+(80-60)×1.2=72元.设甲用户某月用煤气x立方米,用含x的代数式表示甲用户该月的煤气费.
若x≤60,则费用表示为 ;
若x>60,则费用表示为 .若甲用户10月份的煤气费是84元,求甲用户10月份用去煤气多少立方米?
计算:-(cos30°-1) 0-82×0.1252.
如图,抛物线与
轴交于
两点,与
轴交于
点.
(1)请求出抛物线顶点的坐标(用含
的代数式表示),
两点的坐标;
(2)经探究可知,与
的面积比不变,试求出这个比值;
(3)是否存在使为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.
如图,已知BC是⊙O的直径,AH⊥BC,垂足为D,点A为弧EF的中点,BF交AD于点E,且BE·EF=32,AD=6.
(1)求证:AE=BE;
(2)求DE的长;
(3)求BD的长 .
如图,已知二次函数的图象与
轴相交于两个不同的点
、
,与
轴的交点为
.设
的外接圆的圆心为点
.
(1)求与
轴的另一个交点D的坐标;
(2)如果恰好为
的直径,且
的面积等于
,求
和
的值.