已知中,角
的对边分别为
,
且
的面积
,
(1)求的取值范围;
(2)求函数的最值
(本小题满分18分)已知数列,
.
(1)求证:数列为等比数列;
(2)数列中,是否存在连续的三项,这三项构成等比数列?试说明理由;
(3)设,其中
为常数,且
,
,求
.
(本小题满分18分)已知函数;
(1)判断函数奇偶性,并说明理由;
(2)求函数的反函数
;
(3)若函数的定义域为[,
],值域为
,
,并且
在
,
上为减函数.求
的取值范围;
(本小题满分16分)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).
(1)求双曲线C的方程;
(2)若直线与双曲线C恒有两个不同的交点A和B,且
(其中
为原点),求
的取值范围。
(本小题满分14分).已知:(
,
为常数).
(1)若,求
的最小正周期;
(2)若,
时,
的最大值为4,求
的值.
(本小题满分12分)如图,在体积为三棱锥
中,
⊥平面
,
且
,求异面直线
与
所成角.