游客
题文

已知函数.
(1)当时,求的单调递增区间;
(2)是否存在,使得对任意的,都有恒成立.若存在,求出的取值范围; 若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知向量,设函数.(1)若,f(x)=,求的值;(2)在△ABC中,角A,B,C的对边分别是,且满足,求f(B)的取值范围.

已知函数
(1)求函数的单调递增区间;
(2)记函数的图像为曲线.设点是曲线上不同两点.如果在曲线上存在点使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”.
试问:函数是否存在“中值相依切线”,请说明理由.

已知数列满足)。
(1)求数列的通项公式;
(2)设,求的前n项和
(3)设,数列的前n项和,求证:对

函数
(1)当时,求函数上的最大值;
(2)如果函数在区间上存在零点,求的取值范围.

如图所示, 四棱锥P-ABCD的底面是边长为1的正方形,PA^CD,PA = 1,PD=,E为PD上一点,PE = 2ED.
(1)求证:PA ^平面ABCD;
(2)求二面角D-AC-E的余弦值;
(3)在侧棱PC上是否存在一点F,使得BF // 平面AEC?
若存在,指出F点的位置,并证明;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号