已知函数.
(1)当时,求
的单调递增区间;
(2)是否存在,使得对任意的
,都有
恒成立.若存在,求出
的取值范围; 若不存在,请说明理由.
某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为
,求
的分布列和数学期望.
设
的内角
的对边分别为
,且
为钝角.
(1)证明:
;
(2)求
的取值范围.
设
,且
.
(1)
;
(2)
与
不可能同时成立.
已知直线
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)将曲线
的极坐标方程化为直角坐标方程;
(2)设点
的直角坐标为
,直线
与曲线
的交点为
,求
的值.
如图,在圆
中,相交于点
的两弦
,
的中点分别是
,
,直线
与直线
相交于点
,证明:
(1)
;
(2)